Rapid induction of apoptosis mediated by peptides that bind initiation factor eIF4E

نویسندگان

  • Terence P Herbert
  • Robin Fåhraeus
  • Alan Prescott
  • David P Lane
  • Chris G Proud
چکیده

Overexpression of the translation initiation factor eIF4E leads to cell transformation and occurs in a number of human cancers [1]. mRNA translation and cell growth can be regulated through the availability of eIF4E to form initiation complexes by binding to eIF4G. The availability of eIF4E is blocked through the binding of members of a family of eIF4E-binding proteins (4E-BPs) [2] [3]. Indeed, cell transformation caused by the overexpression of eIF4E can be reversed by the overexpression of 4E-BPs [4] [5] [6] [7] [8]. To study the role of eIF4E in cell transformation, we developed a series of peptides based on the conserved eIF4E-binding motifs in 4E-BPs and eIF4G [9] linked to the penetratin peptide-carrier sequence, which mediates the rapid transport of peptides across cell membranes. Surprisingly, introduction of these eIF4E-binding peptides into MRC5 cells led to rapid, dose-dependent cell death, with characteristics of apoptosis. Single alanine substitutions at key positions in the peptides impair their binding to eIF4E and markedly reduce their ability to induce apoptosis. A triple alanine substitution, which abolishes binding to eIF4E, renders the peptide unable to induce apoptosis. Our data provide strong evidence that the peptides induce apoptosis through binding to eIF4E. They do not induce apoptosis through inhibition of protein synthesis, as chemical inhibitors of translation did not induce apoptosis or affect peptide-induced cell death. Thus these new data indicate that eIF4E has a direct role in controlling cell survival that is not linked to its known role in mRNA translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The eIF4E/eIF4G interaction inhibitor 4EGI-1 augments TRAIL-mediated apoptosis through c-FLIP Down-regulation and DR5 induction independent of inhibition of cap-dependent protein translation.

The small molecule 4EGI-1 was identified as an inhibitor of cap-dependent translation initiation owing to its disruption of the eIF4E/eIF4G association through binding to eIF4E. 4EGI-1 exhibits growth-inhibitory and apoptosis-inducing activity in cancer cells; thus, we were interested in its therapeutic efficacy in human lung cancer cells. 4EGI-1, as a single agent, inhibited the growth and ind...

متن کامل

Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis.

Eukaryotic translation initiation factor 4E (eIF4E) is the mRNA cap-binding protein required for translation of cellular mRNAs utilizing the 5' cap structure. The rate-limiting factor for mRNA recruitment to ribosomes, eIF4E is a major target for regulation of translation by growth factors, hormones, and other extracellular stimuli. When overexpressed, eIF4E exerts profound effects on cell grow...

متن کامل

Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E–eIF4G interactions

Translation initiation in eukaryotes is mediated by assembly of the eIF4F complex over the m(7)GTP cap structure at the 5'-end of mRNAs. This requires an interaction between eIF4E and eIF4G, two eIF4F subunits. The Leishmania orthologs of eIF4E are structurally diverged from their higher eukaryote counterparts, since they have evolved to bind the unique trypanosomatid cap-4 structure. Here, we ...

متن کامل

Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release.

Eukaryotic translation initiation factor 4E (eIF4E) markedly reduces cellular susceptibility to apoptosis. However, the mechanism by which the translation apparatus operates on the cellular apoptotic machinery remains uncertain. Here we show that eIF4E-mediated rescue from Myc-dependent apoptosis is accompanied by inhibition of mitochondrial cytochrome c release. Experiments achieving gain and ...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000